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Abstract-Adaptive mesh methods are valuable tools in improving the accuracy and efficiency 
of the numerical solution of evolutionary systems of partial differential equations. If the mesh moves 
to track fronts and large gradients in the solution, then larger time steps can be taken than if it 
were to remain stationary. We derive explicit differential equations for moving the mesh so that 
the time variation of the solution at the mesh points is minimized. Moving the mesh based on 
this approach allows for larger time steps but does not guarantee that the solution is well resolved in 
space. We maintain spatial accuracy when there are new emerging layers or wave fronts by adaptively 
rezoning the mesh points to equidistribute an error estimate. When using a multistep integration 
method, the past solution values are also interpolated so that the same multistep method can be 
used after rezoning. The resulting algorithm has very few problem-dependent numerical parameters 
and is appropriate for a large class of one-dimensional partial differential equations. We illustrate the 
performance of the algorithm by examples and demonstrate that the proposed algorithm is efficient 
and accurate when compared with other adaptive mesh strategies. @ 2003 Elsevier Ltd. All rights 
reserved. 

Keywords-Moving mesh, Static rezone, Partial differential equations, h-r method, Adaptive 
mesh method, Initial value problems. 

1. INTRODUCTION 
We combine two adaptive mesh strategies to globally distribute the mesh points to improve both 
accuracy and efficiency when solving time-dependent partial differential equations (PDEs). The 
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moving mesh (MM) method (also called an r-adaptive method) dynamically moves the grid in 
time [1,2] to minimize the numerical errors. The MM methods based on minimizing the time rate 
of change of the solution [3-5] define a mesh velocity in terms of the time and space derivatives of 
the solution. The solution is changing slowly in this MM reference frame, and larger time steps 
can be taken without sacrificing accuracy. However, the mesh distribution may quickly fail to 
adequately resolve the solution. When thi$ happens, it is convenient to use a static rezone (SR) 
method [6] (also called an h-adaptive method [7]) to regain spatial accuracy. The SR method 
freezes the solution and defines a new mesh that reduces the spatial truncation errors, and then 
interpolates the solution from the old mesh to the new one. This combination of the MM and SR 
methods (the MMSR method) has the potential of being more accurate and efficient than either 
approach alone [4,8]. 

When integrating the solution with a multistep time integration solver during the interpolation 
step in a SR method [5,9], the efficiency of the computation can be improved by interpolating the 
past values of the solution to the new mesh rather than restarting the integration with a one-step 
method. We extend this approach (sometimes called a warm restart [3] to reduce the impact of 
the SR on the error estimates for the ordinary differential equation (ODE) or differential algebraic 
equation (DAE) solver. This can often allow the solver to continue the integration with a higher 
order multistep method and/or a larger time step after the SR. 

After reviewing the MM and SR methods that we will be using, we describe how to improve 
the methods and provide a detailed description of our algorithm. We then demonstrate the 
effectiveness of combining the MMSR method with a finite difference method (FDM). 

2. THE MOVING MESH EQUATIONS 

Consider the scalar PDE 
ut = f(U,%Um), (1) 

where f is a nonlinear function of u and its spatial derivatives. For example, a scalar reaction- 
diffusion equation could be expressed as 

f(u) = wxx + h(u). 

Transforming the spatial coordinates to a moving grid system, equation (1) becomes 

,fh - u,k = f (u, ‘Ilzr Gz> , 

(2) 

(3) 

where ti and f are the rates of change of u and x in the moving coordinate system. 
The grid velocity 2 can be chosen to minimize the time variation of u and x in the new. 

coordinates, 

rnp [ (ti12 + cr Iii21 = rnp [C ti2 + a521 

= min 
k E 

(f + u,q2 + ak2 . 
3 

The summations are over all the equations and cy is a dimensional scaling parameter. Solving 
this equation locally for i at each mesh point gives 

cr~+?i~u, =o, 

or equivalently, 
k = -f(~,%uZz) ‘Uz. 

Q + ‘112 . u, (5) 

This strategy minimizes the change in u and x, but the mesh points can easily cross when 
solved in discrete time steps. Consider a steep moving front where a mesh point in the front 
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moves at a velocity that is nearly equal to the speed of the front, while a mesh point at the 
leading edge of the front does not move because the solution is flat there. Unless the time steps 
are made sufficiently small, the mesh point moving with the front will cross the stationary point,. 

Petzold [5] adds a diffusion-like term to the MM equations that has the effect of smoothing 
out the difference in mesh velocities at adjacent points, 

o!k + ti 1 u, - A(i),, = 0, (ti, 

where X > 0. With these smooth mesh velocities the mesh points are unlikely to cross on a time 
step and the MM method can take larger time steps. Petzold also determined that the penahy 
term in equation (6) is important even when mesh points are deleted and moved apart by the 
SR strategy after every time step. Also note that equation (6) is not invariant under scaling and 
translation of u and z. 

The MM and SR methods should be, as nearly as possible, invariant under scaling and trans- 
lation 2 +- a~ + b, ii +- cu + d to be reliable when the PDEs are not well scaled. In the MM 
method, we minimize a weighted Ez norm, 

(ig2+?g (I$)‘! 
where NPDE is the number of PDEs in the original system, and wi are weights. Note that, 
the weight w, takes the place of the scaling constant a! in equations (4) and (6). We define 
W x= a(z~ - ze), where normally cy = 1, or a! = 0.1 if w, needs to be decreased compared 
with wi. Then the weighted version of equation (6) at xj is given by 

We define the weights wi by 

Wi = max(]max{ui) -min{~)] ,floor(i)), PI 

where the maximum and minimum are taken over all the mesh points. It is easy to check that 
if floor(i) is scaIed appropriateIy, the MM equation is approximateiy invariant under scaling 
and translation of u and z. The choice of floor(i) can be especially important for components 
that start out initially flat and later develop gradients. Generally, floor(i) can be chosen as 
max( [ max(ui} - min{zld}]) w h ere ui is the estimate of solution of the steady state. 

The MM system, equations (3) and (8), can be discretized by a finite element, collocation. 
finite volume, or finite difference method. In the numerical experiments presented here, all of the 
spatial derivatives are discretized by three-point FDMs. 

3. THE STATIC REZONE ALGORITHM 
Moving the mesh according to equation (8) can result in many fewer time steps than with a 

fixed mesh. A disadvantage of MM equations based only on the time variation of the solution 
is that the grid points may not move to where they are needed to reduce the spatial errors and 
may be overly concentrated in one region and absent in another region where they are needed. 
To overcome this deficiency, the SRs are needed to achieve an appropriate distribution of points. 

The simplest and safest approach is to perform a SR after every time step [5]. However, 
a considerable disadvantage of the SR is that it necessitates interpolation and interrupts the 
time stepping process. Frequent interpolation may damage the accuracy considerably, while 
interruption of the time-stepping process triggers a time-consuming restart situation for the stiff 
solver (in our case the BDF solver DASSL Ill]). In th’ is section, we discuss how to reduce the 
number of SRs and their impact on the time integration. 
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3.1. Identifying When to Rezone 

The SRs can drastically affect the efficiency of the temporal integration, so an SR should be 
performed only when it is needed. Thus, we evaluate the mesh function every Kth time step (K 
to be prescribed) or at prescribed times [9] and perform SR only if the mesh function is outside 
some prescribed bounds. 

Because time steps will be smaller when the solution is changing rapidly, we choose to monitor 
the mesh function and consider an SR after a specified number (KS,) of temporal integration 
steps rather than at fixed times. A similar strategy used by Adjerid and Flaherty [12] found 
that KS, = 4 was a reasonable choice for a wide range of problems. In our experiments with the 
MMSR algorithm, we found that KS, could be much larger and still retain the same accuracy. 
This was especially the case when the solution had converged to a traveling wave or self-similar 
solution. 

When a new internal layer or wave front emerges, more mesh points are needed to maintain the 
same accuracy in the solution. When a wave diminishes, fewer points are needed to resolve the 
wave and can be deleted without loss of accuracy. These two situations where an SR is needed 
can be identified by monitoring the change in total variation (TV) of the solution at time t,, 
which is calculated by 

N-l NPDE N-l 

i=l j=l 

Here we have assumed that all of the solution components have been scaled. We investigated 
estimating the total variation of the spatial derivatives u, instead of u to capture these changes 
in the wave fronts but found that this approach was not effective. To signal the need for a SR in 
these situations, we evaluate the TV by equation (10) on every time step, and compare it with 
the value of the previous one (the value for the last SR or initial solution). 

The relative change of the total variation 

RTv = 2.0 ( (TVn - TV”+l) 1 
TVn + TV”+l ’ 

measures the change in the TV of the solution. The mesh function is evaluated and a static 
rezone may be considered only if RTV 1 20% (0.2) or RTV < 50% (0.5). These two choices were 
determined experimentally to give the best performance over a wide range of problems. 

Another case when an SR is needed is when the solution has converged to a traveling wave or 
self-similar solution. In this case, the TV does not change much and the MM equation (8) slowly 
causes the points to drift from their optimal positions. A SR is needed to pull the mesh points 
back to improve the spatial accuracy and resolution in those areas. We solve this problem by 
applying an SR after an fixed number (K,,) of temporal integration steps. 

The size of KS, depends on the average mesh velocity $ over all of the mesh points and the 
maximum allowable spacing AZ,,, of the grid. For a general problem, KS, can be estimated by 

where At is the current time step. We also have an option to use a constant KS,, which is 
prescribed by the user, in our software. Generally, for problems which do not have emerging 
layers or waves fronts, KS, can be very large (e.g., KS, = 100); for problems where emerging 
layers or wave fronts are generated constantly, KS, should be small (e.g., KS, = 5). 

To avoid unnecessary SRs for solutions that start smooth and later develop steep gradients, 
we do an SR only after the TV exceeds a threshold value. In all of our test examples, we set the 
threshold for TV to be 0.5 after scaling. 
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When discontinuities (weak solul$ons) occur in the solution of PDEs, some FDMs (for example. 
central difference) are unable to resolve them and introduce small spurious oscillations near the 
discontinuity which increase the TV and trigger an SR. The refined grid will quickly eliminate 
the oscillations, and the refined grid near the discontinuity will be coarsened. On the coarser 
grid, the oscillations will reappear and start the cycle again. 

A simple but effective approach to smooth a discontinuity is to replace the solution by th(l 
averaged value 

1 
uj +-- 2 

( 
uj + 

(Xj - q-1) uj+1 + (Zj+1 - q) uj-1 (11) 
Xjs+l -23-1 1. 

The smoothing is performed only before the mesh function is computed. A much better approach 
for hyperbolic PDEs is to use a high-resolution upwind FDM [13] or to explicitly include an 
artificial dissipation term in the equations. 

3.2. Equidistributing the Mesh Function 

After an SR has been called for, the next step is to redistribute the grid points based on thr 
information about the current solution. Almost any static rezone method can be used in this 
step. We used a global equidistribution method. That is, we compute a mesh function for the 
current grid and then equidistribute it to find the new locations of the grid points. 

How to choose the mesh function for an SR is not as critical as for the moving mesh [14]. In 
all of the examples in Section 4, we chose the monitor function based on the first and second 
derivatives of the solution 

M(u, x) = &I + u; + CQN(AU,)~, (1:jj 

where Q~,CY~ are user-defined parameters, and N is the number of grid cells. Then the mesh 
function in each cell and the new number of grid points are defined as 

m(u, x) = AsM(u, x)! N,,, = C m(u, xl 
TOL 

(1 1) 

The parameter TOL is a user-defined tolerance. 
The parameters (~1 and (~2 in (13) are easy to choose for a general problem. For example, we 

choose (~1 = 0.1, ~22 = 0 for a hyperbolic problem with shocks, and we choose (~1 = 122 = 0.1 for a 
reaction-diffusion problem. The parameter TOL in (14) determines the number of nodes needed 
between two adjacent SRs, and is difficult to choose for general problems. We can avoid using 
TOL if the initial number of nodes is specified by the user. We increase or decrease the number 
of nodes based on the relative change in the total variation. That is, the number of nodes for a 
new SR grid is computed by 

N TV,,, 
- -%d------r new - 

TVold 
where Nold is the number of nodes before the SR. Because FDMs are more accurate when the grid 
spacing is smoothly varying, we apply a global smoothing step [13] as part of the SR algorithm. 

To reduce the number of times the solution is interpolated, the number of mesh points is 
changed only if the sum of m(u, x) increases by at least 10% or decreases by at least 20%. The 
local optimal mesh spacing is obtained by equidistributing m(u, x) by inverse interpolation [61. 
Next, the solution is interpolated onto the new mesh. 

3.3. Restarting After a Static Rezone 

After a new grid is generated and the solution has been interpolated from the old mesh to thp 
new one, the simplest approach would be to restart the time integrator as though solving a n(‘w 
problem. This is called a full restart by Berzins et al. [lo] and is appropriate for single-step time 
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integration methods such as Runge-Kutta methods. For multistep methods, a full restart would 
cause the ODE/DAE solver to choose the lowest order single-step method and to reduce the time 
step size to satisfy the error tolerance of the lowest order method. 

In a warm restart (or flying restart [lo]), the history array used by the ODE/DAE solver is 
also interpolated to the new mesh, and the integration is continued with the same step size and 
order as would have been used had the SR not taken place. Because the number of equations may 
have changed in the SR and the Jacobian matrix is difficult to interpolate accurately, we always 
reevaluate the Jacobian matrix in a warm restart. We typically use cubic Bermite interpolation 
in our SR and occasionally apply a monotonicity limiter [15]. 

When the interpolation is not accurate, the implicit ODE solver might still choose a first- 
order method after some error test failures because of the large residuals. The mesh velocities 
are difficult to interpolate accurately if they are not smoothly varying in space. When the mesh 
velocities are smooth functions of 2, the integration will continue after a warm restart with almost 
the same time step and order as though the mesh had not been changed. The regularization in 
equation (8) smoothes the mesh velocities. 

For problems with very steep wave fronts, the interpolation errors in a warm restart may not 
be sufficiently small and may cause the ODE solver to reduce the stepsize and/or order. In our 
experience, even if the ODE/DAE solver eventually restarts with the first-order method, the time 
stepsize is much larger than that for a full restart. Only when the mesh velocities are very rough, 
or when there were insufficient mesh points to adequately resolve the solution, did we find that 
it was more effective to do a full restart. 

4. NUMERICAL EXPERIMENTS 

Many of the MM methods that have been proposed in the literature [1,6,8,13] are based on 
equidistributing a measurement (e.g., arclength or curvature) of the solution. These equidis- 
tributing MM (ED-MM) methods have a fixed number of grid points and can accurately solve 
many problems without a static rezone procedure, including problems in which new wave fronts 
or sharp gradients develop. In this section, we will compare the MMSR method with the best 
performance of the Dorfi and Drury (DD) [16] an moving mesh PDE (MMPDEG) [2] methods. d 
In these ED-MM methods, when the shape of the solution changes quickly during a simulation, 
mesh points may have to move a large distance to equidistribute the spatial error. When this 
happens, the MMSR method is more efficient because grid points are removed from over-resolved 
regions and new mesh points are added to unresolved regions by the SR. 

The diffusion coefficient X in equation (8) (which determines the smoothness of the mesh 
velocity and also affects the minimum spacing during the mesh moving) and the time-step interval 
K,, between two static rezones are two of the most important parameters in determining the 
effectiveness of the MMSR method. 

For problems that require small spacing to resolve shock waves, we chose X = 0.01. In our 
examples, this choice allows the grid spacing to shrink down to lo-‘. For problems with smooth 
solutions, we chose X = 0.2 and observed that the grid movement was smoother and that the 
warm restart technique worked better than X = 0.01. 

K,, can be estimated by equation (11) if the solution structure changes rapidly. However, for a 
solution that converges to a steady state, K,, can be much larger than (11). We selected K,, = 100 
(unless it is stated otherwise) in our software. The warm restart solutions were interpolated with 
either cubic Hermite interpolation (the MMSR(WR-M) method) or monotone cubic Hermite 
interpolation (the MMSR(WR-C) method). There were no convergence test failures of the DAE 
solver in any of these examples, unless noted. 

The resulting ODE systems are solved using the double precision version of DASSL [ll], where 
an approximate Jacobian is computed by DASSL internally using finite differences. The relative 
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and absolute local time stepping error tolerances (in a root-mean-square-norm) are chosen based 
on the requirements of the problems. 

The acronyms used to describe the computational statistics and numerical methods arc listed 
in Table 1 

Table 1. Acronyms used in the tables describing the performance of the numerical 
methods. 

MMM 

NSR 

NSTP 

RES 

NJAC 

NCTF 

NETF 

NRJ 

CPU 

KS, 

39~2 

E max 

WN) 

Moving mesh method 

Number of SRs 

Number of time steps used 

Number of residual evaluations (excluding Jacobian evaluations) 

Number of Jacobian evaluations 

Number of convergence test failures 

Number of error test failures 

Number of residual evaluations (including Jacobian evaluations) 

Total CPU time taken to solve the problem 

Maximum number of time steps between SF& 

152 difference between the numerical and exact solution 

L, difference between the numerical and exact solution 

Dorfi and Drury method [16] with N grid points 

MMPDEG(N) Moving mesh PDE6 of Huang et al. [2] with N grid points 

MMSR(WR-C) MMSR with warm restart and cubic Hermite interpolation 

MMSR(WR-M) MMSR with warm restart and monotone cubic Hermite interpolation 

MMSR(FR) MMSR method with full restart 

4.1. Scalar Combustion Model 

This example illustrates that for MM based on time variation, SR is crucial during the formation 
of steep fronts in reaction diffusion equations. It is demonstrated that reducing the number of 
SF& can greatly improve the efficiency of the MMSR method, and that a warm restart is more 
effective than a full restart when the mesh moves smoothly. 

Adjerid and Flaherty [17] evaluated their adaptive MM method on the single-step, reaction- 
diffusion PDE, 

Ut=u,,+0(2-21)exp O<x<l, o<t, 
(15) 

%(O, q = 0, u(1, t) = 1, u(x,O) = 1, 

where D = 5edld. The solution is the temperature of a reactant that gradually increases from 
unity until a “hot spot” forms at 5 = 0 causing the temperature to rapidly increase to 2. A front 

forms and quickly propagates towards x = 1 with speed proportional to d. 
In Figure la, the solution to equation (16) with d = 20 is shown developing a hot spot (ignition) 

at t = 0.26 and moving across the domain. We chose the relative and absolute error tolerances 
for DASSL to be 10m6, approximated the spatial derivatives with a central three-point FDM, 
used the parameters K,, = 100, X = 0.2 (as in [5,9]), and did not smooth the solution. Thertl 
are three SRs, all between times 0.26 and 0.27 in the wave-forming phase. The number of grid 
points following each SR is 21, 26, and 32. The reference solutions are computed with DASSL 
using 600 equally spaced nonmoving grid points. 

In Table 2, we compare the MMSR method (see Figure la) with the performance of the 
DD method [16] and MMPDEG of Huang et al. [2] with 30 nodes. Note that the warm restart 
is more effective than the full restart, although only three SRs are performed. After the warm 
restarts, DASSL retained the same order and almost the same step size. 
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(a) The solution of the combustion model equation (16) with d = 20 is shown at 
times t = 0.0, 0.26, 0.27, 0.28, and 0.29. The MMSR methods prove to be an 
effective approach for solving the scalar combustion model. 
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(b) The solution of the combustion model with d = 30 and K,, = 100 is shown at 
t = 0.0, 0.24, 0.2405, 0.2410, 0.242, 0.244, and 0.246. The mesh moving is not as 
smooth as for d = 20. The MMM based on the time variation is inaccurate without 
the SF&. 

Figure 1. 
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Table 2. Results of the scalar combustion model with d = 20. The warm restart 
method gives a slight improvement in efficiency in this relatively smooth problem. 

MMM NSTP NRES NJAC NETF NRJ CPU ELM .&ax 

MMSR(FR) 305 505 74 16 1024 0.932 0.0029 0.0150 

MMSR(WR-C) 265 470 49 24 813 0.693 0.0012 0.0071 

MMSR(WR-M) 290 509 49 25 852 0.741 0.0023 0.0133 

DD(30) 452 876 72 56 1668 2.210 0.0013 0.0064 

MMPDE6(30) 448 813 60 53 1953 2.452 0.0025 0.0118 

Table 3. Results of the scalar combustion model with d = 30. The warm restart 
method offered little improvement over the full restart method for this problem with 
a relatively steep solution. Although MMSR methods may take more time steps 
(NSTP) than the ED-MM methods, the CPU cost is often less because the cost for 
each shp is much less for MMSR methods. The average number of nodes for the 
MMSR method is 45, compared to 41 for the ED-MM methods. Decreasing K,, 
can increase the number of SF& which can dramatically affect the computational 
efficiency. 

I MMM 1 NSR NSTP NRES NJAC NETF NRJ CPU J3~2 Em.Y 

MMSR(FR) 13 1195 1891 235 35 3536 3.12 0.0103 0.143 

MMSR(WR-M) 13 1139 1807 202 88 3221 3.04 0.0089 0.123 

MMSR(WR-M)* 43 2103 3309 476 204 6641 5.92 0.0101 0.140 

MMSR(WR-C) 12 1104 1762 191 81 3099 2.84 0.0096 0.133 

DD(41) N/A 700 1244 67 28 1981 4.68 0.0092 0.128 

MMPDE6(41) N/A 890 1514 80 16 3034 5.76 0.0098 0.136 

*This is for KS, = 504 (KS, = 100 for the others) 

The wave front develops much faster when d = 30 (see Table 3 and Figure lb). We decreased 
the error tolerances to 10e7. We used KS, = 100, X = 0.1. We also tested with KS, = 50 (see 
MMSR(WR-M)* in Table 3. The computation is much slower than when KS, = 100. Sincr 
evaluating equation (8) for the mesh does not require additional mesh function evaluations, the 
average cost of one residual evaluation for the MMSR method is much less than for an ED-MM 
method. Thus, even when the number of residual evaluations (NRJ in the table) is larger for 
the MMSR method than for an ED-MM method, the CPU cost is less (see Table 3). The warm 
restart did not work as well as when d = 20; DASSL always warm restarted with a first-order 
method after an SR. Comparing with the case of d = 20, we find that the mesh velocity for d = 30 
is not a smooth function in space. This may be the reason why the integration fails to continue 
using a higher order method after a warm restart. The apparent need to adjust the time steps 
after an SR causes a large number of error test failures (NETF in Table 3). 

The static rezones are especially important to redistribute mesh points to where they are 
most needed during the formation of steep wave fronts, even when the number of grid points is 
hxed. We also verified that if the time variation MM method is used without the SR, the spatial 
resolution quickly degrades and the solution becomes very poorly resolved. 

4.2. Burgers’ Equation 

The advantage of combining the MM with an SR method is particularly clear when solving 
equations where a shock wave forms from smooth initial data. The mesh points track the char- 
acteristics of the solution during the shock formation to improve the accuracy and efficiency of 
the method. This example demonstrates that an SR can quickly redistribute (e.g., add and/or 
delete) the mesh points to resolve the solution, and the integration is more efficient with the 
equidistribution done by an SR instead of an ED-MM. It also demonstrates that the KS, should 
be kept small if new emerging layers or fronts are generated constantly and rapidly. 
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(a) The results of Burgers’ equation for Dorfi and Drury method (t = 3.2). The 
oscillation for DD(121) is because the equidistribution in the DD method requires 
additional points. Oscillations disappear when the number of nodes is increased 
to 161. 

2 1 I , I 
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X 

(b) The results of Burgers’ equation for MMSR method (t = 3.2). The average 
number of nodes is 123. Because the solution structure is varying rapidly (new 
shocks emerge and old shocks disappear constantly), we chose K,, = 5. 

Figure 2. 
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We consider Burgers’ equation 

212 
Ut = - ( > Tz 

+ 0.0001u,,, 5 E (0:3), 

with the initial condition 

u(x,O) = 
1 + cos(27rz), X I 1, 

2, x > 1. 

The inflow left boundary ~(0, t) = 1 + cos(2rt) and the outflow right boundary are defined by 
first-order extrapolation. The initial solution (Figures 2a and 2b) steepens and moves to the 
right until a viscous shock forms and propagates to the right boundary and disappears there. 
New waves keep on coming from the left boundary and are rapidly transformed into shocks and 
propagated to the right. We chose the relative and absolute error tolerance for DASSL to be lo-‘*. 

This example is a challenging problem for an ED-MM method, because when a shock dis- 
appears suddenly on the right boundary or a new shock forms rapidly near the left boundary. 
the equidistribution will be destroyed quickly unless the grid points are rapidly redistributed to 
maintain an ED mesh. The rapid redistribution of the mesh results in very small time steps and 
many convergence test failures in DASSL. 

Note that the redistribution for the ED-MM method is done inside the integration by DASSL. 
However, for the MMSR method, this equidistribution is done occasionally, outside the integra- 
tion. Using K,, = 5, as estimated by (ll), resulted in 73 SRs. Even with so many SRs, Table 1 
shows that the MMSR with the warm restart was the most efficient approach. The full restart 
(see Table 4) does not work well for this example. 

Table 4. The MMSR method with warm restart is more efficient than the tuned DD 
methods for the solution of Burgers’ equation. The MMPDEG failed to solve this 
problem because of too many mesh crossings. 

MMM NSTP NRES NJAC NRE NETF NCTF CPU ELZ 

MMSR(FR) 2709 6282 2533 24013 0 0 35.68 0.3363 

MMSR(WR-M) 369 774 186 2076 27 13 3.23 0.0918 

MMSR(WR-C) 531 970 232 2594 28 13 4.68 0.1035 

DD(121) 1545 3644 781 12235 82 110 44.72 0.1397 

DD(161) 1155 2673 593 9196 54 83 44.44 0.0929 

The solution in Figure 2b was obtained with a first-order centered FDM combined with local 
smoothing as in equation (12). Without the local smoothing operator of equation (12), spurious 
oscillations quickly appear when shocks form and increase the number of SRs. In this simuiation. 
the parameter X = 0.01 limited the minimum grid spacing to 0.00001. When X = 0.2, we 
observed the minimum spacing to be 0.0012 and the shock wave was poorly resolved. 

4.3. Near Steady-State Convection Problem 

For some convection problems, the MMM will move the mesh points with the flow instead of 
where they are most needed to resolve the solution. In those cases, an SR is required occasionally 
to redistribute the mesh points. 

Carlson and Miller [18] solved the convection equation 

ut = -u, + b(z), -4 Ix < 4. (17i 

with initial condition ~(2, 0) = 0 and the Dirichlet boundary condition ~(-4: t) = ~(4. t) = 0, 
to test the gradient-weighted moving finite element (GWMFE) method. The forcing function 
b(z) = O.lzexp(-z’) was chosen so that the steady-state solution has sharp corners at IC = fl. 
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Figure 3. The MMSR method concentrates the mesh points in the regions of high 
curvature in the solution of the linear hyperbolic PDE (17) at time t = 80. 

This seemingly simple linear PDE has been used to illustrate the weaknesses of some adaptive 
MM methods [18]. The solution cannot be adequately resolved by a uniform grid of 80 nodes 
or by an ED-MM (DD or MMPDE with an arclength monitor) method with 80 nodes. The 
GWMFE [18] also fails to solve this problem, even after including a small diffusion term EU,,. 

We also added a small diffusion term, 0.0001~,,, to equation (17) and because the solution 
is so small, we set floor = 0.05 M max ]u] in equation (9) and the absolute and relative error 
tolerances to 10m4. The solution and mesh velocities are smooth (see (17)) and we chose X = 0.2, 
K,, = 100. The average number of nodes was 72. 

There were 14 SFLs, 13 of which occurred during the wave formation and convergence to steady 
state. Near steady state, the nodes slowly migrate to the right and concentrate in the right 
side of the domain. The later SRS move the points back so that they are better distributed. 
This behavior has also been observed for the scaled gradient weighted moving finite element 
method (SGWMFE) method [18]. 

Because the mesh velocity varies smoothly for this problem, it is more efficient to use warm 
restarts than full restarts (see Table 5). 

Table 5. The warm restart was an effective approach in solving the linear hyperbolic 
PDE (17) to steady state. 

MMM NSR NJAC NRES NSTP NETF 

MMSR(FR) 14 147 920 496 8 

MMSR(WR-C) 14 76 727 396 12 

5. CONCLUSION 

We combine an MM method where the mesh velocities are defined to minimize the time varia- 
tion of the solution with a static rezone method to distribute the grid points to reduce the spatial 
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errors. This MM approach allows.the time integration method to use large time steps without 
sacrificing temporal accuracy. Because the distribution of the mesh points chosen to minimize 
time accuracy may not resolve the solution well in space, a static rezoning of the mesh is needed 
to equidistribute the mesh and to reduce the spatial truncation error. 

The numerical experiments verify the efficiency and robustness of the combined moving mesh-- 
static rezone method for solving one-dimensional, time-dependent PDEs with moving wave fronts 
or shock waves. The parameters for the method are relatively easy to choose. The bandwidth of’ 
the linear equations for the MMSR method is less than that for the ED-MM approach. 

Because the mesh function is evaluated only in the SR, which happens a few times during 
the integration, the average cost of one time step for the simple MMSR method is less than 
the ED-MM method where the mesh function is calculated at every residual evaluation. The 
overhead of restarting the time integration after an SR can be much reduced by the warm-restart 
techniques. Also, new emerging layers or wave fronts are more easily captured and resolved by thcx 
adaptive SR procedure than by an ED-MM method with a fixed number of grid points. Becausc~ 
the equidistribution for the MMSR method is performed independent of the time integration: it 
is more efficient for problems when the solution structures vary (e.g., new fronts emerge or old 
fronts disappear) constantly and rapidly. 

Our MMSR method can be more efficient than other MM approaches for problems with new 
emerging layers or wave fronts, and for problems where the solution structures change frequently. 
and in situations where fast computation of steady-state solution is required. 
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